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Logistics and Goals

* Tutorial Time: 2 hr (15 min break after first hour)
* What this tutorial will do:
+ Motivate and define differential privacy

* Provide overview of common methods and tools to
design differentially private ML algorithms

 What this tutorial will not do:

* Provide detailed results on the state of the art in
differentially private versions of specific problems



Learning Outcomes

At the end of the tutorial, you should be able to:
 Explain the definition of differential privacy,

* Design basic differentially private machine learning
algorithms using standard tools,

» Try different approaches for introducing differential
privacy into optimization methods,

+ Understand the basics of privacy risk accounting,

* Understand how these ideas blend together in more
complex systems.



Motivating
Differential Privacy



Sensitive Data

Medical Records

Genetic Data

Search Logs (0K )8l€



AOL Violates Privacy

A Face Is Exposed for AOL Searcher No. 4417749

By MICHAEL BARBARO and TOM ZELLER.

Published: August €, 20086

Buried in a list of 20 million Web search queries collected by AOL and
recently released on the Internet is user No. 4417749. The number was
assigned by the company to protect the searcher’s anonymity, but it was

not much of a shield.

No. 4417749 conducted hundreds of
searches over a three-month period on
topics ranging from “numb fingers” to
“60 single men” to “dog that urinates on




Netflix Violates Privacy [NS08]

Movies

NETELIX e

User 3

2-8 movie-ratings and dates for Alice reveals:
Whether Alice is in the dataset or not

Alice’s other movie ratings



High-dimensional Data is Unique

Example: UCSD Employee Salary Table

Position

Gender I Department | Ethnicity N Salary

Faculty Female CSE SE Asian .

One employee (Kamalika) fits description!




Disease Association Studies [WLWTZ09]

Cancer Healthy
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Correlations Correlations

Correlation (R? values), Alice’s DNA reveals:
If Alice is in the Cancer set or Healthy set



Simply anonymizing data is unsafe!

Statistics on small data sets is unsafe!

Privacy

Data Size Accuracy



Privacy Definition



The Setting

privacy barrier

I
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Property of Sanitizer

privacy barrier

|
<o | summary

\_—/ & =
/ statistic

Prvite  — Privacy-preserving _|_> synthetic

data set sanitizer | dataset
D \ ML model
N 4 |
non-public | public

Aggregate information computable

Individual information protected
(robust to side-information)



Differential Privacy

N
Data + 5" * [AlgorithmJ * Outcome
* [Algorithm} * Outcome

Participation of a person does not change outcome

Data +

Since a person has agency, they can decide
to participate in a dataset or not



Case |: Study
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Case 2: Study

Prior Knowledge:

= A probably
ot has cancer
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A’s Genetic profile
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A smokes

Smoking causes cancer

[ Study does not violate privacy]




How to ensure this?

...through randomness

&
A(Data + \‘;% )

Random have close

variables Py distributions
A(ata + €F )



How to ensure this?

have close
distributions

Random
variables

Randomness: Added by randomized algorithm A

Closeness: Likelihood ratio at every point bounded



Differential Privacy [DMNSO06]

For all D, D’ that differ in one person’s value,

If A = e-differentially private randomized algorithm, then:
p(A(D) =)

sup ' log <e€
t

p(A(D') =t)1 —




Approx. Differential Privacy [DKM+06]

pIAD) = IAD) =] |

For all D, D’ that differ in one person’s value,

If A = (¢, ) -differentially private randomized algorithm, then:

Pr(A(D) € S) — 5] _
Pr(A(D)eS 1-°

max [log
S,Pr(A(D)€S)>é



Properties of
Differential Privacy



Property |: Post-processing Invariance

PN
NG A

Private
data set

D

P o T

Risk doesn’t increase if you don'’t touch the data again

privacy barrier

differentially
private
algorithm

|
—

(€1,01)

non-private
post-
processing

legitimate user 1

legitimate user 2

e

(€1,01)

(€1,01)



Property 2: Graceful Composition

i
e A

_—

Private
data set

D
e
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>

-

—b(S: €, S: ‘5'11)

Total privacy loss is the sum of privacy losses

(Better composition possible — coming up later)



How to achieve
Differential Privacy?



Tools for Differentially Private
Algorithm Design

® Global Sensitivity Method [DMNS06]
® Exponential Mechanism [MT07]

Many others we will not cover [DL09, NRSO7, ...]



Global Sensitivity Method [DMNSO06]

Problem:

Given function f, sensitive dataset D

Find a differentially private approximation to f(D)

Example: f(D) = mean of data points in D



The Global Sensitivity Method [DMNS06]

Given: A function f, sensitive dataset D

Define: dist(D, D’) = #records that D, D’ differ by



The Global Sensitivity Method [DMNSO06]

Given: A function f, sensitive dataset D

Define: dist(D, D’) = #records that D, D’ differ by

Global Sensitivity of f:
S(f) = | #(D) - {(D)]

D'

Domain(D)




The Global Sensitivity Method [DMNS06]

Given: A function f, sensitive dataset D

Define: dist(D, D) = #records that D, D’ differ by

Global Sensitivity of f:

S(f) = max | f(D) - f(D’)|
dist(D,D’) = |

Domain(D)

D’
D,




Laplace Mechanism

Global Sensitivity of f is S(f)

Output f(D) + Z, where
S(f)

Z ~ Lap(0,1)
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Gaussian Mechanism
Global Sensitivity of fis S(f) =  max | f(D) - f(D’)|
dist(D,D’) = |

Output f(D) + Z, where
S(f)

Z ~ N(0,2In(1.25/8)) (e, 0)-differentially
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Example |: Mean

f(D) = Mean(D), where each record is a scalar in [0, ]



Example |: Mean

f(D) = Mean(D), where each record is a scalar in [0, 1]

Global Sensitivity of f = I/n

Laplace Mechanism:

1
Output f(D)+ Z, where Z ~ —Lap(0,1)

Te€



How to get Differential Privacy?

® Global Sensitivity Method [DMNSO06]

® [wo variants: Laplace and Gaussian

® Exponential Mechanism [MTO07/]

Many others we will not cover [DL09, NRSO7, ...]



Exponential Mechanism [MTO07]

Problem:

Given function f(w, D), Sensitive Data D

Find differentially private approximation to

w* = argmax f(w, D)

w

Example: f(w, D) = accuracy of classifier w on dataset D



The Exponential Mechanism [MT07]

Suppose for any w,
[f(w, D) — f(w,D)| < S

when D and D’ differ in | record. Sample w from:

p(fw) X eef(‘w,D)/2S

for e-differential privacy.

N . argmax f(w, D)

f(w, D) Pr(w)

——



Example: Parameter Tuning

Given validation data D, k classifiers wi, .., Wik

(privately) find the classifier with highest accuracy on D

Here, f(w, D) = classification accuracy of w on D

For any w,any D and D’ that differ by one record,

f(w. D) — f(w,D')| < |—11>|

So, the exponential mechanism outputs w; with prob:

Pr(w;) o e€lPlf(wi,D)/2



Summary

— Motivation
— What is differential privacy?

— Basic differential privacy algorithm design tools:

— The Global Sensitivity Method

— Laplace Mechanism
— Gaussian Mechanism

— Exponential Mechanism



Differential privacy in
estimation and prediction



Estimation and prediction problems

C; privacy barrier
‘—: _f(W. ) risk functional
Private (,0) '
data set I
- DP estimate of | X
\l_)/ m— argmin f (w’ D) _1—>| W A Prlvate eftumator.
ample size n = , E[f(w,z)] — E[f(W",2)]

Statistical estimation: estimate a parameter or
predictor using private data that has good expected
performance on future data.

Goal: Good privacy-accuracy-sample size tradeoff



Privacy and accuracy make different
assumptions about the data

€ D privacy barrier

\_/' l . .
Private (£,0) '
data set |
|

D DP estimate of X o estimat
—— - (r—— AT private estimator
\ 2L J argmin f(w, D) S e
w ' E[f(W,2)] - E[f(W",2)]

sample size n |

Privacy — differential privacy makes no assumptions on
the data distribution: privacy holds unconditionally.

Accuracy - accuracy measured w.r.t a “true population
distribution”: expected excess statistical risk.



Statistical Learning as Risk Minimization

W~ = argmin — Z( (X3, ¥:)) + AR(W)

* Empirical Risk Minimization (ERM) is a common paradigm
for prediction problems.

Produces a predictor w for a label/response y given a
vector of features/covariates X.

+ Typically use a convex loss function and regularizer to
“prevent overfitting.”



Why is ERM not private?

N T L L T L T T T T T T =5

C >
|

Private
data set

easy for adversary to tell the
difference between D and D’

D or D'?

adversary

[CMSI1,RBHTI2]



Kernel learning: even worse

+ Kernel-based methods produce a classifier that is a
function of the data points.

* Even adversary with black-box access to w could
potentially learn those points. ;=== ;

R ¥ ++ -
w(x) = Za.,;k:(x,x.,;) - ) 4= 5

[CMSI |

_________________________________



Privacy is compatible with learning

* Good learning algorithms generalize to the population

distribution, not individuals.
» Stable learning algorithms generalize [BEO2].

- Differential privacy can be interpreted as a form of stability
that also implies generalization [BNS+15].

* Two parts of the same story:
Privacy implies generalization asymptotically.
Tradeoffs between privacy-accuracy-sample size for finite n.



Revisiting ERM

w = argmin — Z b(w, (X,yi)) + AR(w)

W n

* Learning using (convex) optimization uses three steps:
|. read in the data
2. form the objective function

3. perform the minimization

* We can try to introduce privacy in each step!



Revisiting ERM

i — algmm — Z b(w, (X,¥;)) + AR(w)

* Learning using (convex) optimization uses three steps:
|. read in the data input perturbation

2. form the objective function  oObjective perturbation

3. perform the minimization output perturbation

* We can try to introduce privacy in each step!



Privacy in ERM: options

input
perturbation

input
perturbation

input
perturbation

input
perturbation

input
perturbation

input
perturbation

’—:—»

sanitized
database

non-
private =

algorithm

(2 )

privacy

| -



Privacy in ERM: options

private
database

o— D

| sanitized
~p | dataset non-
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privacy



Privacy in ERM: options

&—

—)p  Private
database

non-private

preprocessing

l

DP
optimization

(€,0)

privacy
barrier

Wobjective



0—

—

Privacy in ERM: options

private
database

non-private

preprocessing

'

non-private
optimization

\

o

noise addition
or
randomization

(€,0)

privacy
barrier



Local Privacy
®— T

- perturbation | |
|

» input i
. perturbation ,

input I
. % perturbation [T >

I sanitized non-
- > input || database ———| private —>
‘ perturbation I algorithm

>  input e
y perturbation |

& input ‘ —
. perturbation

. privacy
(£.0) barrier

* Local privacy: data contributors sanitize data before collection.
» Classical technique: randomized response [WW65].

* Interactive variant can be minimax optimal [DJW13].



Input Perturbation

|
A — i
|
|
. =P private | sanitized
database DP | dataset non-
’4 E— | preprocessing -’

| learning
D (.8) 1
: s ﬁ- . |
. I
|
f— i
|

Winput

privacy
barrier

* Input perturbation: add noise to the input data.

+ Advantages: easy to implement, results in reusable

sanitized data set.
[DJW13,FTS17]



|
I non-privatie I
. preprocessing I
‘ |
|
. —p  Private I
database non-private |
o optimization |
‘ ﬁ p N |
By
D W
.'. ﬁ
noise addition : A
or —_— Woutput
. — randomization : p
(£,0) privacy

barrier

+ Compute the minimizer and add noise.
+ Does not require re-engineering baseline algorithms

Noise depends on the sensitivity of the argmin. [CMSI |, RBHTI2]



Objective Perturbation

—

—)p Private
database

|
non-private
preprocessing

'

DP
optimization

(€,9)

privacy
barrier

—+——> Wobjective



Objective Perturbation

- Z( (Xiyyi)) + AR(W)

A. Add a random term to the objective:

Wpriv = argmin (J (W) + wa)

W

B. Do a randomized approximation of the objective:

Wiy = argmin J (W)
W

Randomness depends on the sensitivity properties of J(w).
[CMSI 1 LZAF12)



Sensitivity of the argmin

Wpriv = argmin (J(W) + WTb)
W

» Non-private optimization solves VJ(w) =0 = w"
» Generate vector analogue of Laplace: b ~ p(z) e—</2ll=l

» Private optimization solves V.J(w) = —b = wy,iy

 Have to bound the sensitivity of the gradient.



Theoretical bounds on excess risk

Same important parameters:
» privacy parameters (&, 0)
+ data dimension d

. data bounds ||x;|| < B

- analytical properties of the loss
(Lipschitz, smoothness)

» regularization parameter A



Theoretical bounds on excess risk

Same important parameters:
input perturbation

+ privacy parameters (€, 0)

- [ Vdlog(1/6)

O) » data dimension d
ne
- data bounds ||x;|| < B
+ analytical properties of the loss
(Lipschitz, smoothness)
(quadratic loss) * regularization parameter A

[FTS17]



Accuracy (%)

Typical empirical results

NER s |In general:

cor 8 = Non-Private LR

Wiy [CMS1 1] o |

3 I T * Objective perturbation

Y empirically outperforms output
perturbation.

Misclassification error rate

T v “rumgieda. -« = = * Gaussian mechanism with (g, )

(a) Regularized logistic regression, KDDCup99 guarantees Outperform Laplace -
URL Dataset like mechanisms with &-
>—o—o - guarantees.
y [JT14]
@Output I} . .
0 ~oupucass ¢ Loss vs. non-private methods is

. ._....-0‘"‘*- @ Objective
5 ®Objective-Gauss

b very dataset-dependent.

£ 10" 10° 10’



Gaps between theory and practice

+ Theoretical analysis is for fixed privacy parameters —
how should we choose them in practice?

+ Given a data set, can | tell what the privacy-utility-
sample-size tradeoff is?

* What about more general optimization problems/
algorithms?

* What about scaling (computationally) to large data sets!?



Summary

» Training does not on its own guarantee privacy.

+ There are many ways to incorporate DP into prediction
and learning using ERM with different privacy-accuracy-
sample size tradeoffs.

* Good DP algorithms should generalize since they learn
about populations, not individuals.

» Theory and experiment show that (g, 0)-DP algorithms

have better accuracy than €-DP algorithms at the cost of
a weaker privacy guarantee.



Summary

Training does not on its own guarantee privacy.

There are many ways to incorporate DP into prediction
and learning using ERM with different privacy-accuracy-
sample size tradeoffs.

Good DP algorithms should generalize since they learn
about populations, not individuals.

Theory and experiment show that (&, )-DP algorithms

have better accuracy than €-DP algorithms at the cost of
a weaker privacy guarantee.



Differential privacy and
optimization algorithms



Scaling up private optimization

* Large data sets are challenging for optimization:
= batch methods not feasible

» Using more data can help our tradeoffs look better:
= better privacy and accuracy

* Online learning involves multiple releases:

= potential for more privacy loss



Scaling up private optimization

+ Large data sets are challenging for optimization:
= batch methods not feasible

Using more data can help our tradeoffs look better:
= better privacy and accuracy

* Online learning involves multiple releases:
= potential for more privacy loss

Goal: guarantee privacy using the optimization algorithm.



Stochastic Gradient Descent

+ Stochastic gradient descent (SGD) is a moderately
popular method for optimization

» Stochastic gradients are random

= already noisy = already private?

+ Optimization is iterative

= intermediate results leak information



Non-private SGD

- ZE , (Xi,9i)) + AR(w)

wo =0 + select a random data point
Fort=1,2,...,T
iy ~ Unif{l,2,...,n}
g = VEe(wi_1,(Xi,,¥i,)) + A\VR(w;_1)
= Ihy(Wi—1 — 7t8¢)
W = W7

+ take a gradient step



Private SGD with noise

” Z b(w, (Xi,y:)) + AR(w)

wo =0 » select random data point

Port=1.2....,4 . .
b o UNIFLL B, o 5 5 10) » add noise to gradient
Zt ~ P(e.5)(2)
g =2+ VE(w_1,(x4,,¥:,)) + AVR(wy_1)

Wi = HW(Wt—l — 'Ut@t)
W = W7

[SSCI15]



Choosing a noise distribution

“Laplace” mechanism Gaussian mechanism
Nz iid. ~ (log(1/9
p(z) x et/ p(z) 55N (0,0 ( og;/ )>)
e —DP (¢,0) — DP

+ Have to choose noise according to the sensitivity of the
gradient:

max max |VJ(w; D) — VJ(w; D)

» Sensitivity depends on the data distribution, Lipschitz
parameter of the loss, etc.



Private SGD with randomized selection

nZC (%i,9i)) + AR(W)

+ select random data point

wo =0
Fort=1,2,...,T  randomly select unbiased
is ~ Unif{1,2,...,n} gradient estimate

= VE(wi—1, (X, ¥i,)) + AVR(Wi_1)

gt ~ D(e,6),g(2)

wy = Iy (w1 — m:8t)
W = W7

[DJWI13]



Randomized directions

L I r
— WP, =T |~§~l

2722 Select hemisphere in
direction of gradient

[DWI3] .-

; \, or opposite.

'.‘ P 1+ e Pick uniformly from

1 /B the hemisphere and
1+ et N ' take a step

s -
R

Need to have control of gradient norms: lg|| < L

+ Keep some probability of going in the wrong direction.



Noisy Gradient Random Gradient

Choose noise distribution using Randomly select direction biased
the sensitivity of the gradient. towards the true gradient.

Both methods

« Guarantee DP at each iteration.

* Ensure unbiased estimate of g to guarantee convergence



Making DP-SGD more practical

“SGD is robust to noise”

* True up to a point — for small epsilon (more privacy), the
gradients can become too noisy.

+ Solution |: more iterations ([BST14]: needO(n?) )
* Solution 2: use standard tricks: mini-batching, etc. [SSCI 3]

» Solution 3: use better analysis to show the privacy loss is
not so bad [BST 14][ACG+1 6]



Randomly sampling data can amplify
privacy

A

Private

privacy barrier

data set

D » Subsample

0 i

Differentially
private algorithm

27Y¢€

S—

>

* Suppose we have an algorithm A which is €-differentially

private for € < |.

* Sample yn entries of D uniformly at random and run A

on those.

* Randomized method guarantees 2Yyé&-differential privacy.

[BBKN [4,BST 14]



Summary

*+ Stochastic gradient descent can be made differentially
private in several ways by randomizing the gradient.

+ Keeping gradient estimates unbiased will help ensure
convergence.

- Standard approach for variance reduction/stability (such
as minibatching) can help with performance.

« Random subsampling of the data can amplify privacy
guarantees.



Measuring total privacy loss

privacy barrier
legitimate user 1 (61 . (51 )

I .
N wative
(M | e
differentially | | non-private data derivative | -
Private |y private —p| post- legitimate user 2 (61 . %) 1 )
data set algorithm | processing
< ative :
Qe (61.()1) ' adversary (61,51)
|

Post processing invariance: risk doesn’t increase if you don’t
touch the data again
* more complex algorithms have multiple stages

= all stages have to guarantee DP

* need a way to do privacy accounting: what is lost over time/
multiple queries?



A simple example

privacy barrier
Preprocessing (8 14 5 1 )

]
—
/:/V Training (62 3 52 )

Private L '
data set C %
D | . val;::t?on (63 ) 53 )
)

' Testing (54, 54)




Composition property of
differential privacy
Basic composition: privacy loss is additive:
. Apply R algorithms with (€;,6;):i=1,2,..., R
. Total privacy loss:

(% 2)

* Worst-case analysis: each result exposes the worst
privacy risk.



What composition says about
multi-stage methods

rivacy barrier
p y Preprocessing (5 1- 51 )

I
-
/:/V Training (E ) 4 5 2 )

Private '
data set

D \I> v;ir:as:;n (53, (53)
\_,/\
I Tesing | (£4, 04)

Total privacy loss is the sum of the privacy losses...




An open question: privacy
allocation across stages

Compositions means we have a privacy budget.

How should we allocate privacy risk across different stages
of a pipeline?

* Noisy features + accurate training?
» Clean features + sloppy training?

It’s application dependent! Still an open question...



A closer look at € and ©

Gaussian noise of a given variance produces a spectrum of
(€, O) guarantees:

0.20 |

01

0.15}

0.10

0.05 | /

0.00




A closer look at € and ®

Gaussian noise of a given variance produces a spectrum of

(€, 0) guarantees:

0.20 }
0.15¢}
0.10 |

0.05 |

0.00

---------

--------

| p(r2|D)

p(72|D)

p(72|D’)

| p(T2| D)

< exp(ez)



Privacy loss as a random
variable

Gaussian mechanism (¢, d) tradeoff

Spectrum of (g, 0)

’ guarantees means we can
trade off € and ® when
analyzing a particular
mechanism.

Y 0.2 0.4 0.6 0.8 1.0
o~

~

Actual privacy loss is a random variable that depends on D:

p(A(D) =)

p(A(D") = t) w.p. p(A(D) =t)

ZD,D’ - log



Random privacy loss

P(A(D) = 1)

b, =log o py =) WP PAWD) =1)

* Bounding the max loss over (D,D’) is still a random
variable.

* Sequentially computing functions on private data is like
sequentially sampling independent privacy losses.

+ Concentration of measure shows that the loss is much

closer to its expectation.



Strong composition bounds

k times
S —— N ———
(,9).(g,0),...,(c,0) » Given only the (&, 0)
guarantees for k
algorithms operating

on the data.

+ Composition again
((k—2i)e,1—(1— 5)% (1 — 0i)) gives a family of
(€, ) tradeoffs: can
quantify privacy loss
i—1 (k k—0)e k—2i40)e by choosing any
B o 0 (6) (e( ) — ef ) ) valid (&, O) pair.
(14 ef)”

[DRVI0, KOV 5]



Moments accountant

- N r B
o R ( \
- A|
{ %
e () A —(c0)
| -
D <N
= = \ )
\_ -4

Basic Idea: Directly calculate parameters (&,0)

from composing a sequence of mechanisms

More efficient than composition theorems

[ACG+6]



How to Compose Directly?

Given datasets D and D’ with one different record,

mechanism A, define privacy loss random variable as:

P(A(D) =)
p(A(D) =t)°

Zp p for Gaussian Mechanism

ZD D! = log W.p. p(A(D) — f.)

- Properties of Zpp
related to privacy loss of A

privacy loss
|

If max absolute value of Zpp
overall D,D’ is €, then A is

S (§,0)-differentially private
produced output ¢




How to Compose Directly?

Given datasets D and D’ with one different record,

mechanism A, define privacy loss random variable as:

p(A(D) =1t)
Zp.p =1 ,
PP TR pAD) = 1)

Zp p for Gaussian Mechanism

w.p. p(A(D) = t)

Challenge: To reason about

the worst case over all D, D’

privacy loss

Key idea in [ACG+16]: Use
moment generating functions

-3 e ;
-3 -2 -1 0 1 2 3

produced output f




Accounting for Moments...

<
e A

Private
data set

D
-

—

.—

>

Three Steps:

r

\

— (€,9)

|. Calculate moment generating functions for Aj, Ay, ..

2. Compose

3. Calculate final privacy parameters

[ACG+6]



|. Stepwise Moments

AT Ty
b

Private
data set

D
h SR 4

Define: Stepwise Moment at time t of A; at any s:

— loo Ele$%D.p’ (D and D’ differ
aa,(s) Is)l,lg, og Ele | by one record)

[ACGH+16]



2. Compose

Theorem: Suppose A = (Aj,...,AT). For any s:

as(s) < Z ay,(s)
- [ACG+16]



3. Final Calculation

i F N
P A ( \
- A|
R
st — [ Ay | A (€,0)
i I
/B,
——
T ; ..

Theorem: For any & mechanism A is (€,0)-DP for
0 = minexp(aa(s) — se)

Use theorem to find best € for a given O from closed form
or by searching over sy, s, .., Sk [ACG+16]



Example: composing Gaussian

mechanism
i r
e ey
' A|
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Private |
data set ———— AZ
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Suppose A: answers a query with global sensitivity | by

adding N(O, 1) noise



|. Stepwise Moments

T
S

Private
data set

D
S

Suppose A: answers a query with global sensitivity | by
adding N(O, |) noise
s(s+1)

2

Simple algebra gives for any s: a4, (s) =



2. Compose

R
N A

Private
data set

D
~

Suppose A: answers a query with global sensitivity | by
adding N(0O, 1) noise

T

T's(s+1

aa(s) <Y an,(s) = D)
t=1

2




3. Final Calculation

a0 & ™
\____/ )
& A|
{ %
Private
dataset > AZ A
' N
D >
\___/ oliie )
\_

Find lowest d for a given € (or vice versa) by solving:
0 = minexp(7Ts(s+1)/2 — se)

In this case, solution can be found in closed form.



cpsnon

How does it compare?

[] [PRVIQ]

(better than linear)

Moments
Accountant

50 100 150 200 250 300 350 400

#rounds of composition
[ACGH] 6]



How does it compare
on real data?

-
L= EM for MOG
a . )
g with Gaussian
T Mechanism
8 S —4
2 5 =10
o
o
B
@ 50+ 4
= - = = nonpriv-EM ‘
T, 60} —se— Lin (GGG)
3 —%— Adv (GGG) |
= =70 —»— zCDP (GGG) -
E 1 MA (GGG)
1 07158 1.3316 1.0474 25632 3.1789 3.7947

cumulative privacy loss

[PFCWI7]



Summary

Practical machine learning looks at the data many times.

Post-processing invariance means we just have to track
the cumulative privacy loss.

Good composition methods use the fact that the actual
privacy loss may behave much better than the worst-case
bound.

The Moments Accountant method tracks the actual
privacy loss more accurately: better analysis for better
privacy guarantees.



When is differential privacy practical?

Differential privacy is best suited for understanding
population-level statistics and structure:

* Inferences about the population should not depend
strongly on individuals.

+ Large sample sizes usually mean lower sensitivity and
less noise.

To build and analyze systems we have to leverage post-
processing invariance and composition properties.



Differential privacy in practice

@ chrome  Google: RAPPOR for

tracking statistics in

Chrome.
l(\ Apple: various iPhone
usage statistics.
C[éni%sﬁg Census: 2020 US Census
2020 will use differential privacy.

mostly focused on count and average statistics



Challenges for machine learning
applications

Differentially private ML is complicated because real ML
algorithms are complicated:

+ Multi-stage pipelines, parameter tuning, etc.

* Need to “play around” with the data before
committing to a particular pipeline/algorithm.

* “Modern” ML approaches (= deep learning) have
many parameters and less theoretical guidance.



Some selected examples

new network
Private l weights

S o X oo ; 0
e et B ¥
! /\

moments | clip and update
For today, we will describe some recent examples:

original
posterior

accountant | add noise parameters

(£, ) ) privacy

posterior

processed

|. Differentially private deep learning [ACG+16]

2. Differential privacy and Bayesian inference



Differential privacy and deep learning

class DPSGD_Optimizer():
def __init__(self, accountant, sanitizer):
self._accountant = accountant
self._sanitizer = sanitizer

def Minimize(self, loss, params,
batch_size, noise_options):
# Accumulate privacy spending before computing
# and using the gradients.
priv_accum_op =
self._accountant.AccuzulatePrivacySpending(
batch_size, noise_options)
with tf.control_dependencies(priv_accum_op):
# Compute per example gradients
px_grads = per_exacple_gradients(loss, params)
# Sanitize gradients
sanitized_grads = self._sanitizer.Sanitize(
px_grads, noise_options)
# Take a gradient descent step
return apply._gradients(paranss, sanitized_grads)

def DPTrain(loss, params, batch_size, noise_options):
accountant = PrivacyAccountant()
sanitizer = Sanitizer()
dp_opt = DPSGD_Optimizer(accountant, sanitizer)
sgd_op = dp_opt.Minimize(
loss, params, batch_size, noise_options)

eps, delta = (0, 0)
# Carry out the training as long as the privacy
# is within the pre-set limit.
while within_limit(eps, delta):

sgd_op.run()

eps, delta = accountant.GetSpentPrivacy()

Main idea: train a deep
network using differentially
private SGD and use
moments accountant to
track privacy loss.

Additional components:
gradient clipping,
minibatching, data
augmentation, etc.

[ACG+6]



Overview of the algorithm

|
/”—\ '
o’ . Ly, La, . .. select random :
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Private |
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gradients |
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moments ‘ clip and |
accountant add noise @ |
U

(5 . 5 ) privacy
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new network
weights

O

T

update
parameters

[ACG+]6]



Effectiveness of DP deep learning
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Empirical results on MNIST and CIFAR:

* Training and test error come close to baseline non-
private deep learning methods.

+ To get moderate loss in performance, epsilon and
delta are not “negligible”
[ACGH]6]



Effectiveness of DP deep learning
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Empirical results on MNIST and CIFAR:

+ Training and test error come close to baseline non-
private deep learning methods.

+ To get moderate loss in performance, epsilon and
delta are not “negligible”
[ACG+]6]



Moving forward in deep learning

This is a good proof of concept for differential privacy for
deep neural networks.There are lots of interesting
ways to expand this.

* Just used one NN model: what about other
architectures?! RNNs? GANs?

+ Can regularization methods for deep learning (e.g.
dropout) help with privacy?

* What are good rules of thumb for lot/batch size,
learning rate, # of hidden units, etc?

[ACG+6]



Differentially Private
Bayesian Inference

Model Class © likelihood p(x|0)

awE i ErrAY

Prior =(0) Data X Posterior p(0|X)

Data X = {51,502 s+ } } Related through

Find differentially private approx to posterior



Differentially Private
Bayesian Inference

® General methods for private posterior
approximation

® A Special Case: Exponential Families

® Variational Inference



How to make posterior private?

Option |: Direct posterior sampling [DMNR 14]

Not differentially private except under restrictive
conditions - likelihood ratios may be unbounded!

— p(0|D)

— p(6|D’)

[GSC 7] Answer changes under a new relaxation
Renyi differential privacy [M17]



How to make posterior private?

Option 2: One Posterior Sample (OPS) Method [WFSI5]

P N

original posteriors processed posteriors

|. Truncate posterior so that likelihood ratio is
bounded in the truncated region.

2. Raise truncated posterior to a higher temperature



L1 error for posteror samples of Bernoulll success parameter

10°

.
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-
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o
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How to make posterior private?

Option 2: One Posterior Sample (OPS) Method:

Expenential mechanism (CPS at appropriate temperature) | |

w— Non-private

Laplace mechanism

|

]

10

10° 10°
Number of data points

10°

10°

Advantage: General

Pitfalls:

— Intractable - only exact
distribution private

— Low statistical efficiency
even for large n



How to make posterior private?

Option 3: Approximate the OPS distribution via
Stochastic Gradient MCMC [WFS15]

>~

original posteriors processed posteriors

Advantage: Noise added during stochastic gradient
MCMC contributes to privacy

Disadvantage: Statistical efficiency lower than exact OPS



Exponential Family Posteriors

(Non-private) posterior comes from exp. family:

p(0|z) o o1(0) " (32, T(zi))—B(6)

given data xi, X2, ... \

Posterior depends on data through sufficient statistic T



Exponential Family Posteriors

(Non-private) posterior comes from exp. family:

p(8|z) o M@ " (Z: T(z:)=B(6)
given data x|, X, ..., sufficient statistic T

Private Sampling:

|.If T is bounded, add noise to ZT ) to get private
version T’

2. Sample from the perturbed posterior:
p(0|z) x en(0) ' T'—B(6)
[ZRD16, FGWCI 6]



How well does it work?

%
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Statistically efficient
Performance worse than non-private, better than OPS

Can do inference in relatively complex systems by building
up on this method — eg, time series clustering in HMMs



Differentially Private
Bayesian Inference

® General methods for private posterior
approximation

® A Special Case: Exponential Families

® Variational Inference



Variational Inference

Key Idea: Start with
a stochastic
variational inference
method, and make
each step private by

adding Laplace noise.

Use moments
accountant and
subsampling to track
privacy loss.

0.80 1

0.78 1

Test accuracy

0.74 4

0.72 1

Adult data
T=2000, q=0.001, &y, = 0.001

0.76 1

10°

[JDH16, PFCW 6]



Summary

® Two examples of differentially private complex
machine learning algorithms

® Deep learning

® Bayesian inference



Summary

. Differential privacy: basic definitions and mechanisms

. Differential privacy and statistical learning: ERM and
SGD.

. Composition and tracking privacy loss

. Applications of differential privacy in ML: deep learning
and Bayesian methods



Things we didn’t cover...

» Synthetic data generation.

* Interactive data analysis.

» Statistical/estimation theory and fundamental limits
* Feature learning and dimensionality reduction

+ Systems questions for large-scale deployment

* ... and many others...



Where to learn more

Several video lectures and other more technical
introductions available from the Simons Institute for the
Theory of Computing:

https://simons.berkeley.edu/workshops/bigdata2013-4

Monograph by Dwork and Roth:

http://www.nowpublishers.com/article/Details/TCS-042




Final Takeaways

» Differential privacy measures the risk incurred by
algorithms operating on private data.

» Commonly-used tools in machine learning can be made
differentially private.

* Accounting for total privacy loss can enable more
complex private algorithms.

» Still lots of work to be done in both theory and practice.



Thanks!
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